11. Aminoalkyl Tertiary Carbinols and Derived Products. Part IV. Spasmolytics. Phenyl- and cycloHexylphenyl-carbinols.

By D. W. ADAMSON, P. A. BARRETT, and S. WILKINSON.

A number of 3-amino-1-phenylalkan-1-ols (I; R^1 = alkyl) and 1-cyclohexyl-3-piperidinoalkan-1-ols (II; R^1 = alkyl) were prepared by conventional methods for pharmacological testing.

Amino-1-cyclohexyl-1-phenylalkan-1-ols (III and VII), of interest as spasmolytics, were obtained by controlled partial hydrogenation of the corresponding amino-1: 1-diphenylalkan-1-ols (IV and VI); complete hydrogenation gave the dicyclohexyl compounds.

Compounds derived from the amino-carbinols by dehydration and subsequent reduction are described.

A NUMBER of phenylalkanolamines (I; $\mathbb{R}^1 = alkyl$) and cyclohexylphenylalkanolamines (I; $\mathbb{R}^1 = CH < C_5 H_{10}$) were prepared several years ago for pharmacological testing, as part of our programme in this series (Parts I—III; *J.*, 1949, S144; 1950, 885, 1039); the former are the subject of B.P. Appln. 5932/48. A number of these compounds were described recently by Denton, Lawson, Neier, Schedl, and Turner (*J. Amer. Chem. Soc.*, 1949, 71, 2050, 2053, 2054) and by Ruddy and Buckley (*ibid.*, 1950, 72, 718). The compounds are of interest as spasmolytics (White and Green, personal communication; Becker, Ananenko, Glenwood, and Miller, *Fed. Proc.*, 1946, 5, 163; Cunningham *et al.*, *J. Pharm. Exp. Ther.*, 1949, 96, 151) and it has been reported that 1-cyclohexyl-1-phenyl-3-piperidinopropan-1-ol (I; $\mathbb{R}^1 = CH < C_5 H_{10}$, NR^a $\mathbb{R}^3 = N < C_5 H_{10}$) is a valuable drug in the treatment of Parkinsonism (Doshay and Constable, *J. Amer. Med. Assoc.*, 1949, 140, 1317; Ellenbogen, *Lancet*, 1950, 1, 1034; Phillips, Montuschi, and Shakey, *ibid.*, p. 1131).

(I.)
$$\bigcirc$$
 -CR⁴(OH)·CH₂·CH₂·NR³R³

CR¹(OH)·CH₂·CH₂N (II.)

3-Amino-1-phenylalkan-1-ols (I; $R^1 = alkyl$) were prepared by the same method as that described in the above-mentioned papers, namely, reaction between an alkylmagnesium bromide and the appropriate β -aminopropiophenone. The compounds of this series which have not already been described are included in Table I. The O-acetyl and O-benzoyl derivatives of the carbinols (I; $R^1 = Me$, $NR^2R^3 = NMe_2$ and $N < C_5H_{10}$) were also prepared. The phenylalkanol amines (I; $R^1 = alkyl$, $NR^2R^3 = N < C_5H_{10}$) were hydrogenated in the presence of platinum to the corresponding 1-cyclohexyl-3-piperidinoalkan-1-ols (II; $R^1 = alkyl$).

The Grignard reaction was used also in the first instance for the synthesis of 3-amino-1-cyclohexyl-1-phenylpropan-1-ols (III; $R^1 = H$), but, as found by other workers, the yields were poor

(III.)

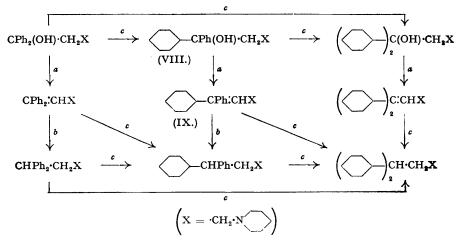
$$(\operatorname{CPh}(\operatorname{OH}) \cdot \operatorname{CH}_2 \cdot \operatorname{CHR}^1 \cdot \operatorname{NR}^2 \operatorname{R}^3 \operatorname{CPh}_2(\operatorname{OH}) \cdot \operatorname{CH}_2 \cdot \operatorname{CHR}^1 \cdot \operatorname{NR}^2 \operatorname{R}^3$$
(IV.)
 $(\bigvee_{2})^2 \operatorname{C}(\operatorname{OH}) \cdot \operatorname{CH}_2 \cdot \operatorname{CHR}^1 \cdot \operatorname{NR}^2 \operatorname{R}^3$

(ca. 10%). The product from the reaction between cyclopentylmagnesium bromide and β -piperidinopropiophenone was a mixture of bases, from which only 1-phenyl-3-piperidino-

propan-1-ol (I; $R^1 = H$, $NR^2R^3 = N < C_5H_{10}$), arising by reduction of the amino-ketone, could be isolated. The propensity of *cyclopentylmagnesium* bromide to reduce instead of add to ketones was discussed by Kharasch and Weinhouse (*J. Org. Chem.*, 1936, 1, 209), and recently Hey and Musgrave (*J.*, 1949, 3156) noted that reduction of the carbonyl groups occurred in place of normal addition in the reaction between this Grignard reagent and deoxybenzoins.

A more satisfactory route to the cyclohexylphenylcarbinols (III; $R^1 = H$ or alkyl) was found in the catalytic hydrogenation of the readily available 3-amino-1: 1-diphenylalkan-1-ols (IV; $R^1 = H$ or alkyl) (Part I, *loc. cit.*, and Part V, to follow). In the presence of Adams's platinum catalyst, the diphenylcarbinols absorbed hydrogen as a continuous process, finally to give the dicyclohexylcarbinols (V), there being no abrupt change in the rate of absorption at a point which would correspond to the saturation of only one of the phenyl groups. However, the hydrogenation followed, to a large degree, a stepwise course for it was possible to stop the reduction at a stage which allowed of the isolation in good yield, of the desired cyclohexylphenylcarbinols (III). This is substantially in accord with the conclusions, based on the kinetic and analytical study of the catalytic hydrogenation of compounds containing more than one phenyl nucleus, recorded by Smith, Aldermann, Shacklett, and Welch (J. Amer. Chem. Soc., 1949, 71, 3772).

The process was examined in detail for the cyclohexylphenylcarbinols which were of particular pharmacological interest. It was expedient to allow absorption of 10-15% in excess of the 3 moles of hydrogen theoretically required, otherwise unchanged diphenylcarbinol, difficult to remove by crystallisation, was present in the product. On the other hand, the fully saturated dicyclohexylcarbinols were readily removed by crystallisation of the basic product, by virtue of their high solubility in organic solvents. The purified products were identical with those prepared from cyclohexylmagnesium bromide and the appropriate β -aminopropiophenone. The ultra-violet absorption spectra, for measurements of which we are indebted to Dr. T. S. G. Jones, as well as mixed melting points with authentic specimens, provided evidence for the structure and purity of the products. As purification proceeded, the fine structure of the absorption band associated with the presence of one phenyl group became more sharply defined and finally was identical with that of the authentic specimens (light absorption in ethanolic solution : maximum, λ 258.5 mµ.; ϵ 233—250). In other cases, when the basic product did not crystallise and where there was no unequivocal specimen available for comparison, purification was effected by recrystallisation of a salt (hydrochloride or hydrogen oxalate), constancy of m. p. and definition of the ultra-violet spectrum being taken as criteria of purity.


Hydrogenation of diphenylcarbinols substituted in the chain in the 3-position (IV; $R^1 = Me$ or Pr^n ; to be described in Part V) proceeded more slowly than that of those lacking the substituent. An example in which the substituent was in the 2-position, *viz.*, 2-methyl-1: 1-diphenyl-3-piperidinopropan-1-ol, was resistant to hydrogenation under the conditions of our experiments. Hydrogenation was considerably slower when the phenyl groups were substituted as in 3-piperidino-1: 1-di-*p*-tolylpropan-1-ol, absorption ceasing when only one of the *p*-tolyl groups was saturated.

(VI.) $CPh_2(OH) \cdot [CH_2]_n \cdot NR^1R^2$

 $\bigcirc -CPh(OH) \cdot [CH_2]_n \cdot NR^1 R^2 \qquad (VII.)$

The process was also applied to some ω -amino-1: 1-diphenylalkan-1-ols (VI; n = 4, 5, 6; to be described in a later paper) from which both the *cyclo*hexylphenyl- and dicyclohexylcarbinols could be prepared. An alternative route was followed in one example: in the catalytic hydrogenation of 5-bromo-1: 1-diphenylpentan-1-ol, saturation of the first phenyl group was rapidly completed but further reduction was very slow, thereby facilitating the isolation of 5-bromo-1-*cyclo*hexyl-1-phenylpentan-1-ol, from which the 5-piperidino-compound (VII; n = 4, NR¹R² = N<C₅H₁₀) was prepared.

It was of interest to prepare the corresponding alkenyl- and alkyl-amines from the carbinols by dehydration and subsequent reduction, especially since earlier work in these laboratories had shown that some related dithienylalkenylamines were potent analgesics (Part II, *loc. cit.*, Adamson and Green, *Nature*, 1950, 165, 122) and that phenylpyridylalkenylamines had a powerful antihistamine action (Part III, *loc. cit.*). A series of products of potential pharmacological interest was obviously available from the diphenylcarbinols by adopting combinations of the following processes : (a) dehydration, (b) hydrogenation of ethylenic linkage in the presence of palladium, (c) hydrogenation of ethylenic linkage if present and of one or both phenyl groups in the presence of platinum. This series of reactions was applied to 1: 1-diphenyl-3-piperidinopropan-1-ol as shown in the appended scheme, and in part to other carbinols as recorded in the experimental section. It was possible that dehydration of 1-cyclohexyl-1-phenyl-3-piperidinopropan-1-ol (VIII) had given either 1-cyclohexyl-1-phenyl-3-piperidinoprop-1-ene (IX) or the isomeric 1-cyclohexyl-idene-1-phenyl-3-piperidinopropane (X), both structures being compatible with the ultra-violet absorption spectrum which exhibited a peak corresponding to the presence of the Ph·CC group in the molecule. The structure (IX) is assigned to the compound on the basis of its oxidation by potassium permanganate to cyclohexyl phenyl ketone. Two other unsaturated amines isomeric with (IX), viz., 1-cyclohex-1'-enyl- and 1-cyclohex-2'-enyl-1-phenyl-3-piperidinopropane, have been described by Jackman, Nachod, and Archer (J. Amer. Chem. Soc., 1950, 72, 716) and another, of undetermined structure, by Ruddy and Buckley (loc. cit.).

The 3-amino-1-phenylalkan-1-ols (I; $R^1 = alkyl$) were dehydrated, and some of the alkenylamines so formed catalytically hydrogenated to 1-amino-3-phenylalkanes. The alkenylamine derived from 3-phenyl-1-piperidinononan-3-ol (I; $R^1 = C_6H_{13}$, $NR^2R^3 = N < C_5H_{10}$) gave *n*-hexyl phenyl ketone on oxidation and was therefore (XI; $R^1 = C_5H_{11}$, $NR^2R^3 = N < C_5H_{10}$). It is assumed that the other alkenylamines also had the allylamine structure (XI), although it is possible that the isomers (XII) were present in minor quantity since the salts of the bases melted over a range and several crystallisations were necessary to attain purity.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} CPh:CH_2\cdot CH_2\cdot CH_2\cdot N \\ (X.) \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} CPh:CH\cdot CH_2\cdot NR^2R^3 \\ CH_2R^1 \end{array} \end{array} \begin{array}{c} \begin{array}{c} CPh:CH_2\cdot CH_2\cdot NR^2R^3 \\ CHR^1 \end{array} \end{array}$$

The compounds now described have been examined for pharmacological properties by Dr. A. C. White and Mr. A. F. Green, of the Biological Division of these Laboratories; they were chiefly of interest on account of their high spasmolytic activity, and a new compound, 1-cyclohexyl-1-phenyl-3-pyrrolidinopropan-1-ol (III; $R^1 = H$, $NR^3R^3 = N < C_4H_8$), and the known piperidino-analogue (VIII) were outstanding in this respect. Some compounds, particularly the quaternary salts derived from the carbinols, had a very strong mydriatic effect, and others were powerful local anæsthetics. Antihistamine activity was not pronounced and no analgesic action was observed. The results of pharmacological examination will be reported elsewhere.

EXPERIMENTAL.

3-Amino-1-phenylalkan-1-ols (Table I, Nos. 1—8).—The β -tert.-aminopropiophenone hydrochloride (0.2 mol.) was added in small portions to an ethereal solution of the Grignard reagent made from the appropriate bromoalkane (0.6 mol.). The mixture was then boiled under reflux for $3\frac{1}{2}$ hours in a waterbath kept at $55-65^\circ$. The resulting pasty mass was decomposed with crushed ice (100 g.) and 25% aqueous ammonium chloride (150 c.c.), acidified with glacial acetic acid at 0°, and kept in the refrigerator overnight. The bulky precipitate of crude amino-carbinol hydrobromide was filtered off and washed with ether. It was suspended in chloroform and basified by addition of excess of aqueous ammonia, with mechanical stirring. The mixture was filtered, and the chloroform layer separated, washed with water, and dried (Na₂SO₄), and the solvent removed by distillation. The residual crude amino-carbinols, when solid, were usually recrystallised from light petroleum (b. p. 40-66°) at low temperatures (acetone-carbino dioxide bath); the yields of purified product were of the order of 60-70%. Those which did not solidify on cooling were purified by distillation under reduced pressure; the yields in these instances were

CI. 15:6 10:6 10:6 10:6 10:7 10:7

4:2 4:1

11-5 11-6

68.8 69.5

10-9

4.1 4.2

11.1 11.5

69-69

* Petrol = light petroleum (b. p. $40-60^{\circ}$).

6.9 9.9 9.9 9.9 9.9 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
10.4

EtOH-COMe₃ Petrol EtOH-EtOAc Solvent for recrystn.* CHCl_s-EtOAc Petrol EtOH COMe, EtOH EtOH Petrol CHCI,-EtOA EtOH-Et,0 EtOH-Et,0 EtOH-Et,0 EtOH-Et,0 EtOH-Et,0 EtOH-Et,0 CHCI_s-EtOA $\begin{array}{c} 54^{\circ}() \cdot 05 \ \mathrm{mm}.\\ 165-166^{\circ}\\ 45-46\\ 151-152\\ 106-108/0\cdot1 \ \mathrm{mm}.\\ 188-160\\ 130-136/0\cdot1 \ \mathrm{mm}.\\ 206-208\\ 54-65\\ 186-187\\ 136-138/0\cdot1 \ \mathrm{mm}.\\ 115-117\end{array}$ M. p. or b. p. $\begin{array}{c} 76.76.75.5\\ 190.191\\ 52.-64\\ 195.-197\\ 176.-177\\ 160.-152\\ 200\\ 192.-194\\ 192.-194\end{array}$

					-		-					
Formula.	C ₁₃ H ₁₀ ON	C ₁₃ H ₁₀ ON,HCI	C16HarON, HCI	C16H3,ON	C16H37ON, HCI	C ₂₀ H ₂₇ ON, HCI C ₂₀ H ₂₇ ON	C ₂₀ H ₃₅ ON, HCI	C ₂₀ H ₃₁ ON,HCI C ₂₀ H ₃₁ ON	C ₂₀ H ₃₁ ON, HCI C ₂₁ H ₃₅ O ₂ N	C ₁₆ H ₃₁ O ₁ N,HCI C ₁₆ H ₃₁ ON,HCI C,"H.ON.HCI	C ₁₀ H ₃ ,ON,HCI C ₂₀ H ₃₀ ON,HCI	^a $N < C_b H_8 = 1 : 2 : 5 : 6-T \dot{e} trahydropyridino$
NR ³ K ⁴ .	$\rm NMe_2$	NMA	S TAT LT	NEt ₂	NEt_2	NEt_2	NBu ⁿ 2	$N < C_{5}H_{8}^{2}$	$N < C_4 H_8 O$	$N < C_5 H_{10}$ $N < C_6 H_{10}$	N < C ₅ H ₁₀ N < C ₆ H ₁₀	1:2:5:6-Te
R².	CH ₃	пJ	-61110-	C ₃ H , ¹	C ₅ H ₁₁ ⁿ	PhCH ₂	C ₃ H,n	C ₆ H ₁₈ n	C ₈ H ₁₇ n		C ₆ H ₁₁ C ₆ H ₁₃	N <c<sub>6H₈ =</c<sub>
R¹.	\mathbf{Ph}	á	T T	Ph	Ph	Ph	Ph	Ph	Ph	CH < C ₆ H ₁₀ CH < C ₆ H ₁₀	CH < C, H ₁₀ CH < C, H ₁₀	

00 6 1210

3-Amino-1-phenyl- and 3-Amino-1-cyclohexyl-alkan-1-ols, CR¹R²(OH)·CH₃·CH₃·NR³R⁴. TABLE I.

Required, %.

Found, %.

Analyses.

No. ٦ 0 somewhat lower. The hydrochlorides of the amino-carbinols were prepared by passing dry hydrogen chloride into a solution of the base in chloroform until acidity to Congo-red was reached. Ether was then added cautiously, with scratching, to the point of crystallisation.

The β -tert.-aminopropiophenone hydrochlorides required as starting materials were prepared by the Mannich reaction (Blicke, "Organic Reactions," 1942, vol. 1, p. 303; Part III, loc. cit.). β -(1:2:5:6-Tetrahydropyridino)propiophenone hydrochloride had m. p. 187—188° after recrystallisation from ethanol (Found: Cl, 14·1. C₁₄H₁₇ON,HCl requires Cl, 14·1%). β -Di-n-butylaminopropiophenone hydrochloride had m. p. 61° after recrystallisation from ethyl acetate-ether (Found: N, 4·8; Cl, 12·1. C₁₇H₂₇ON,HCl requires N, 4·7; Cl, 11·9%).

Amino-carbinol Esters.—The amino-carbinol was dissolved in a small volume of anhydrous acetone, cooled to 0°, and a small excess of the acid chloride added dropwise with stirring. The solution was kept for several hours, and the product which separated was filtered off, washed with acetone, and recrystallised from chloroform-acetone. The following were prepared : 3-acetoxy-1-dimethylamino-3-phenylbutane hydrochloride, m. p. 175° (Found : C, 13·3. C₁₄H₂₁O₂N,HCl requires Cl, 13·1%); 3-benzoyloxy-1-dimethylamino-3-phenylbutane hydrochloride, m. p. 178—180° (Found : Cl, 10·9. C₁₉H₂₃O₂N,HCl requires Cl, 10·7%); 3-acetoxy-3-phenyl-1-piperidinobutane hydrochloride, m. p. 168—170° (Found : Cl, 11·8. C₁₇H₂₆O₂N,HCl requires Cl, 11·4%); 3-benzoyloxy-3-phenyl-1-piperidinobutane hydrochloride, m. p. 175—177° (Found : Cl, 9.9. C₂₃H₂₇O₃H,HCl requires C, 9.5%).

1-cycloHexyl-3-piperidinoalkan-1-ols (Table I, Nos. 9—12).—The 1-phenyl-3-piperidinoalkan-1-ol (3.0 g.; prepared in a similar manner to that described by Denton *et al.*, *loc. cit.*) was dissolved in glacial acetic acid (30 ml.) to which Adams's platinum catalyst (1.0 g.) was added, and the mixture shaken in an atmosphere of hydrogen. When absorption was complete, the catalyst was filtered off, and the filtrate diluted with water and basified in the cold with potassium hydroxide. The liberated base was extracted with ether, and the ethereal solution washed with water, dried (Na_5SO_4), and evaporated. The oily products were converted into the *hydrochlorides*, which were recrystallised.

3-Amino-1-cyclohexyl-1-phenylpropan-1-ols by the Grignard Reaction (Table II, Nos. 2, 3, 5, 8, 11).— The amino-carbinols were prepared from the appropriate β -aminopropiophenone hydrochloride and cyclohexylmagnesium bromide under conditions essentially the same as those described above. The yields of purified product were 10—12%.

The product from the reaction between cyclopentylmagnesium bromide and β -piperidinopropiophenone hydrochloride was an oil which on distillation gave a fraction of b. p. 120—123°/0·1 mm. (42% yield) and a considerable quantity of non-volatile material. The volatile fraction solidified on storage (m. p. 43—45°) and after three crystallisations from ethyl acetate had m. p. 59—61° (Found : C, 76·6; H, 9·3; N, 6·8. Calc. for C₁₄H₂₁ON : C, 76·7; H, 9·6; N, 6·4%). The base was converted into the hydrochloride which, after recrystallisation from ethanol-ethyl acetate, had m. p. 136—138° not depressed on admixture with a specimen of 1-phenyl-3-piperidinopropan-1-ol hydrochloride, prepared by catalytic reduction of β -piperidinopropiophenone hydrochloride (Found : N, 5·5; Cl, 13·9. Calc. for C₁₄H₂₁ON,HCl : N, 5·5; Cl, 13·9%). Mannich and Lammering (*Ber.*, 1922, **55**, 3510) describe the base as having m. p. 68—69°, hydrochloride, m. p. 138°.

Quaternary Iodides (Table II, Nos. 4, 6, 7, 9, 10, 12).—The methiodides were prepared by mixing the amino-carbinol in a small volume of acetone with an excess (ca. 2 mols.) of methyl iodide. After several hours the product was filtered off and recrystallised. The ethiodides were prepared by adding an excess of ethyl iodide to a solution of the amino-carbinol in ethanol and boiling under reflux for 3 hours.

Amino-1-cyclohexyl-1-phenylalkan-1-ols by Catalytic Reduction.—1-cycloHexyl-1-phenyl-3-pyrrolidinopropan-1-ol (Table II, No. 5). 1:1-Diphenyl-3-pyrrolidinopropan-1-ol (3 g.) (Part I, loc. cil.) was dissolved in glacial acetic acid (15 ml.), Adams's platinum catalyst (2·5 g.) (Org. Synth., 1932, Coll. Vol. I, p. 452) added, and the mixture shaken in an atmosphere of hydrogen until the equivalent of 3·4 mols. had been taken up (2 hours). Water was added, the catalyst removed by filtration, excess of ammonia added, and the liberated base extracted with ether. The ethereal solution was dried (MgSO₄) and evaporated. The residue (2·9 g.) had m. p. 69—75°. Crystallisation from light petroleum (b. p. $40-60^{\circ}$) (4 ml.) gave 1·9 g., m. p. 82—84°; recrystallisation gave 1-cyclohexyl-1-phenyl-3-pyrrolidinopropan-1-ol (1·8 g.; 60%), m. p. 85·5—86·5°, not depressed on admixture with the compound prepared by the Grignard reaction, and giving an identical absorption spectrum (light absorption in 0·17% solution in ethanol: maximum, λ 258·5 mµ., ε 233). The light absorption of a 0·17% ethanolic solution

The experiment was repeated, reductions being stopped when different amounts of hydrogen had been absorbed, and the products recrystallised until pure (m. p. and absorption spectrum). The yields obtained when 3.5 and 4.0 mols. of hydrogen were absorbed were 42 and 23%, respectively; a pure product was not obtained from hydrogenations in which 3.25 mols. or less were absorbed. In an experiment on a larger scale, in which the diphenylcarbinol (30 g.), glacial acetic acid (120 ml.), and platinum catalyst (6 g.) were employed, the hydrogen absorption was stopped at 3.4 mols. after 9 hours; the yield of product (m. p. 84-86°) after three crystallisations was 19.3 g. (64%).

1-cycloHexyl-1-phenyl-3-piperidinopropan-1-ol (Table II, No. 8). Several small-scale hydrogenations, similar to those described above were carried out to determine the best level at which to stop hydrogen absorption. Yields of 66, 70, 74, and 70% of the product (crystallised to constant m. p. from light petroleum, b. p. $60-80^{\circ}$) were obtained when 3.0, 3.2, 3.3, and 3.4 mols. of hydrogen, respectively, were absorbed. In a larger-scale experiment [the diphenylcarbinol (25 g.)] hydrogenation was stopped when 3.3 mols. had been absorbed (20 hours). The yield of product (m. p. 113-115°; light absorption, maximum λ 258.5 m μ ., e 250°; hydrochloride, m. p. 255°), after purification by three crystallisations from light petroleum (b. p. 60-80°), was 20.5 g. (80%). In another experiment in which 3.4 mols. of hydrogen were absorbed the yield was 68%. Similar

,	T er	tia	ıry	C	a	rbı	in	ols	; ;	ar	ıd	L)e	ri	ve	ed	j	Pı	00	łu	ct:	s.		Pa	ar	t	IV		
	ſ.ċ	cı/I)	•		1	06		11.0	29.6	28.1	10.5	28.7	27.8	I	10.5	28.5	11-4	2	0.01	5						I	9.2	>225°.	
	ed, %	z	4·3	5	4 ·8		4.9	1			<u>+</u>	I		4.6	I		4.5	x) -	 		4.6		4 4 5 1 0	3.9 1	3.4	3.8 3	3.6 3.1	• •	
	Required, %.	H	9.3 10.3	21	10.7		10.1	1		4	۱.3 ۱	I		9.6	I	1	9.0 9	1.0 1	0.01	, 00 , 00 , 00		8.0	11.1	11.7	10.0	11-3	11-4 10-4	Sublimes	
'ses.	ľ.	نا	70.5		78-9		79-4	I			- 	I		75-2	I		69.3		62	68.7		12:2	7.A0	1.07	67-2	71-1	71-6 68-9	, (g)	
Analyses	ĺ	; ای	·		1	ا و ا	51	0.11	29.6	8.1.2	10.6	28.4	275	Ι	10.6		. 1 .4	4	0.7	:		I			1		9. 	117-0	80°).
	%	ż	4.1 7.7	5 1	4-7		8.4			1	°.			4.5	_ (Ċ	•	3.5 2	t ·3		4.9	1 œ	3.5	ĿI	3.7 2.9	16.3	- 60
	Found, %.) H	9.6	3	0.7		0.2	1			5			9.6			~				1	4.00		- 8- - 19- -				I S	: (b. p
	(¤	نا	70.2	- - -	78-4 1		79-3 1							75.1		· L	0.69	8-17 2		0.69		72.1				1·4 1	71.6 1	258·5°, (f) 116·3—117·0°, (g)	† Petrol = light petroleum (b. p. 40-46°), except ‡ (b. p. 60-80°)
				-	~					· I		•	•		-					0	•				0	-	•	(<i>d</i>) 2	³°), ex
		Formula.	N,HCI	5	7	15	22	C1,H2,ON,HCI		Z	N HCI	IN	17	z	N,HC	IN	U,HCI	C ₁ H ₃₀ ON,HCl		C"H"ON,C"H,	5	N, HCI	CIPUSICON HCI	N HCI	C ₂₁ H ₃ ,ON,C ₂ H,	N,HCI	2.2.14.50N,HCl 2.4.4.50N,C2H2O4	(c) $114.3-115.0^{\circ}$, (d) (e) $204.5-206.5^{\circ}$.	10—46
		Forn	C ₁₉ H ₃₀ ON,HCI		C ₁₉ H ₃₁ ON	Ъ Н	ы Ю	H ₂₀ 01	H ₃₂ ON	H ₃₀ C	Cathology Control Cont	H,O	H ₃ 0	H ₂₀ 0	H ²⁰ 0	H ₃₂ O ₂	H ₂₀ 01	O H		H, O	H ₃ O	H. O	о Г Г Г	H, O	H ₃ ,01	H.O.	C ₂₈ H ₄₈ ON,HCl C ₂₄ H ₄₆ ON,C ₂ H	-5-2(b. p. 4
-			ບໍ່ບໍ່	5	-					-	ۍ ² گ			U C			ບົບ	ว็เ	٦	00	U S	ູ່ຕູ	<u>ל</u>	້ວິວ	5	်း ပ	ట్ ట్	(c) 114 (e) 204	eum (
-	t for		ŝt _a O			EtOH-EtOAc		EtOH-EtOAc	(STUH-ETUAC			EtOH-EtOAc		(EtOH-EtOAc		C C C C C				00			•	c. St.	00	87.4°, (-246°, (petrol
1	Solvent for	recrystn.†	EtOH-Et _a O Petrol	COMe,	Petrol		Petrol	I-HO	EtOH	H-HO	Ferror 1 EtOH	EtOH	I-HO	Petrol	EtOH	H-HO	EtOH-Et ₂ O	ETOH-ETO	ELOH-ELO	COMe,	Petrol	EtOH-Et ₂ (ELOH-EU	EtOH-Et	COMe _s	EtOH_Et ₂ O	EtOH-Et ₂ O EtOH-Et ₂ O		light
	U	н	ЩÅ	48 8	പ്	킢먚	រំជ័	Ĕ.	- '	-	Ϋ́Ε	ГЩ	핖	-	- •		Ξí	걸 d	되 슈 슈	i8	Pe	ă۵	김 쇼	김 프	8	펖	덮덮	b) 186-9—1 5°, (d) 245-	
		M. p.*	8° 45	12 (d)		185 °	86.5	227 (d)	05 (d)	-159 (d)	, (q)	-204	180 (d)	1167	l-272 (d) °	20	1	-245	-244 (u) -263 (d)				49	31					f Pet
ſ		M.	198°								1 20		179-1	14—1	121-2	219-2	6	244-2			98	128	241 <u>_</u> 2		145	146	$182 \\ 138$	-212.5°,	
						•					-			I										-	ate		ate	210.5-	•
ר		Derivative.	loride	loride		de de	Ì	oride	ae	ø	loride	ide	e		loride	de	loride	loride	loride	n oxal		loride	oride	loride	n oxal	oride	oride 1 oxal	(a)	on.
		Deriv	ydroch Ise	/droch	rse .	rdroch ethiodi	tse	droch	ethiod	ntoata	rdroch	thiod	hiodid	Se	droch	ethiodi	varoch	Varoch	varoch	droge	se	vdroch	droch	droch	droge	droch	Hydrochloride Hydrogen oxalate	p.s: $(a) 212-2$: $(a) 212-2$	Ipositi
			° H H H H	ΞE	B	ΞŽ			N.	Ë Å	° Å	Ř	Et	е Р	Ĥ	N	Į:	Ξ.	ΞŦ.	Ē	Ba	E B	ĴĘ	Ê	н	Ħ	ÊÊ	P. D.S.	decorr
		NR ³ R ⁴ .	N < C ₆ H ₁₀ NMe.	14	ţ,		<c<sub>4H₈</c<sub>	•		ם נ	~~°5 ¹¹ 10	1		<c4h80< td=""><td></td><td>Ι.</td><td>1 2 6</td><td>E E E E</td><td>C.H.</td><td>$N < C_{5}H_{10}$</td><td>C,H,</td><td>Б</td><td>L L L L</td><td>t, ~5-1</td><td>Ċ ^LH</td><td>C4H</td><td>N<c<sub>6H₁₀ N<c<sub>6H₁₀</c<sub></c<sub></td><td>) give give n</td><td>* (d) = with decomposition</td></c4h80<>		Ι.	1 2 6	E E E E	C.H.	$N < C_{5}H_{10}$	C,H,	Б	L L L L	t, ~5-1	Ċ ^L H	C4H	N <c<sub>6H₁₀ N<c<sub>6H₁₀</c<sub></c<sub>) give give n	* (d) = with decomposition
		4	v≥ ZZ		NEt.		ž			ž	4			ž								ž	/ \ 12	Ë	V Z	v Z	v v zz	c. cit.)	(p) =
		R ² .	НH	:	H		Η			:	4	I	l	Η		1;	Me	D. He	14	H	H	þ	÷	H	H	H	ΗH	ul. (lo ey (loc	*
		n.	0-	•	1		-			-	-					,				က	4	C		ເຕ 2	ന 2 9		9 9 4 10	a et d	
		R¹.							1	ļ		I	ļ			I						ы С	C.H.	Ċ, H	C H	CGH1	CH < C ₆ H ₁₀ CH < C ₆ H ₁₀	^{a-f} Denton <i>et al.</i> (<i>loc. cit.</i>) give m. Ruddy and Buckley (<i>loc. cit.</i>) give m. p.s	
			섭섭	1	Ч		Ph			ב		•	•	ЪЪ		Ĩ	겉덕	김성	- da	Ph	ЪЪ		CHY	ΕĚ	CH	CH	EH	I ddy	
		No.	2 1	I	en	4	ŝ	•	0 1	- 0	D	6	10	11	01	219	1 1 2	4 L	16	17	18	10					24 25	Rt	

TABLE II. A mino-cyclohexylcarbinols, C₆H₁₁•CR¹(OH)•[CH₂]_n•CHR⁹•NR⁹R⁴.

[1951]

57

results were obtained when the hydrogenations were carried out at an initial pressure of 67 atm. The speed of hydrogenation was slower when 10% aqueous acetic acid or ethanol was used as solvent, and was faster when the hydrochloride was used in place of the free base.

Compounds 2, 3, and 18 (Table II) were prepared by similar methods.

1-cycloHexyl-3-morpholino-1-phenylpropan-1-ol (Table II, No. 11). 3-Morpholino-1: 1-diphenylpropan-1-ol hydrochloride (1.9 g.) (Part I, *loc. cit.*) in ethanol (60 ml.) and water (10 ml.) was shaken with platinum catalyst (0.1 g.) in an atmosphere of hydrogen. The equivalent of 3 mols. of hydrogen was absorbed during 5 days, a white crystalline solid gradually separating. The mixture was warmed on the steam-bath to dissolve the precipitate, filtered hot, concentrated, and allowed to crystallise. The product (1.65 g., 80%) was pure 1-cyclohexyl-3-morpholino-1-phenylpropan-1-ol hydrochloride, m. p. 271-2 °° (decomp.), from which the base, m. p. 114-116°, was obtained.

Compounds 1 and 13—17 (Table II). The corresponding diphenylcarbinol ($5 \cdot 0$ g.) was dissolved in glacial acetic acid (20 ml.), platinum catalyst ($1 \cdot 0$ — $1 \cdot 5$ g.) added, and the mixture shaken in an atmosphere of hydrogen until approximately $3 \cdot 3$ mols. had been absorbed. Water was added, the catalyst filtered off, and the filtrate basified with ammonia. The liberated base was extracted with ether, the ethereal solution dried (Na_sSO_4), and the ether evaporated. The residual oil, which did not crystallise on standing, was converted into its hydrochloride, which was recrystallised to purity as determined by constancy of m. p. and by absorption spectrum. (The preparation of the diphenylcarbinols required as starting products will be described in subsequent papers.)

1-(4-Methylcyclohexyl)-3-piperidino-1-p-tolylpropan-1-ol.—3-Piperidino-1: 1-di-p-tolylpropan-1-ol was prepared by reaction of p-tolylmagnesium bromide with ethyl β -piperidinopropionate by the general method described in Part I (loc. cit.). The base, recrystallised from ethanol, had m. p. 140—141° (Found : C, 81·1; H, 8·7; N, 4·3. C₂₂H₂₉ON requires C, 81·7; H, 9·0; N, 4·3%); hydrochloride, recrystallised from ethanol, m. p. 242—243° (decomp.) (Found : Cl, 9·9. C₂₂H₂₉ON,HCl requires Cl, 9·9%).

The di-p-tolylcarbinol (4 g.) was dissolved in glacial acetic acid (40 ml.) and shaken in an atmosphere of hydrogen in the presence of platinum catalyst (1.01 g.). Hydrogen absorption ceased when approximately 3 mols. had been taken up. The product, 1-(4-methylcyclohexyl)-3-piperidino-1-p-tolyl-propan-1-ol was worked up as the hydrochloride, m. p. 242° after recrystallisation from ethanol-ether (Found : C, 71.9; H, 9.4; N, 3.6. $C_{22}H_{35}ON$, HCl requires C, 72.2; H, 9.8 N, 3.8%).

5-Bromo-1-cyclohexyl-1-phenylpentan-1-ol.—5-Bromo-1: 1-diphenylpentan-1-ol (15 g.) (to be described in a later paper) was dissolved in ethanol (100 ml.), platinum catalyst (1.5 g.) added, and the mixture shaken in an atmosphere of hydrogen. The speed of hydrogen absorption fell abruptly when 3 mols. of hydrogen had been taken up. The catalyst was filtered off, and the filtrate evaporated under reduced pressure. The residue was warmed on the steam-bath with piperidine (2 mols.). The resulting 5-piperidino-1-cyclohexyl-1-phenylpentan-1-ol was isolated in the usual manner and converted into its hydrogen oxalate (Table II, No. 17).

Amino-dicyclohexylcarbinols (Table II, Compounds 19-25).—The corresponding diphenylcarbinols were dissolved in acetic acid and shaken in an atmosphere of hydrogen in the presence of platinum catalyst until the equivalent of 6 mols. of hydrogen had been taken up and absorption had ceased. The products were worked up, as their hydrochlorides or hydrogen oxalates, as described above.

1-Amino-3-phenylalk-2-enes (Table III).—Dehydration of the carbinols to the alkenylamines was carried out by a method which was applied to all cases and is illustrated by the following example. The distilled bases (80—95% yield) were converted into hydrochlorides (addition of dry hydrogen chloride to a chloroform solution, followed by ether precipitation) or into hydrogen oxalates (addition of oxalic acid to an ethanolic solution, followed by ether precipitation).

3-Phenyl-1-piperidinonon-2-ene (Table III, No. 7).—3-Phenyl-1-piperidinononan-3-ol (12 g.) was dissolved in glacial acetic acid (120 ml.) and concentrated hydrochloric acid (36 ml.), and the solution boiled under reflux for 30 minutes. The solution was concentrated under reduced pressure, and the residue diluted with water and basified with excess of ammonia. The oil which separated was extracted with chloroform, the extract washed with water and dried (Na₂SO₄), and the chloroform evaporated. The residue was distilled under reduced pressure, b. p. 134—136°/0.05 mm.; yield 9.1 g. (80%). Treatment of a chloroform solution of the base with dry hydrogen chloride gave a hydrochloride, m. p. 155—175°; by several recrystallisations from ethanol-ethyl acetate pure 3-phenyl-1-piperidinonon-2-ene hydrochloride.

Oxidation. Potassium permanganate (4.5 g.) in water (200 ml.) was added dropwise during 1 hour to a solution of the hydrochloride (1.25 g.) in water (20 ml.). The mixture was distilled in steam, and the oil extracted from the distillate by ether. The ethereal extract was dried (Na₂SO₄) and evaporated to give *n*-hexyl phenyl ketone (0.5 g.), b. p. 272°, m. p. 14—15° (lit., b. p. 276°, m. p. 17°) (Found : C, 82·2; H, 9·8. Calc. for $C_{13}H_{18}O$: C, 82·2; H, 9·5%); *p*-nitrophenylhydrazone, m. p. 127—128° (lit., m. p. 127—128°) (Found : C, 70·3; H, 7·5; N, 13·0. Calc. for $C_{19}H_{23}O_{3}N_{3}$: C, 70·1; H, 7·1; N, 12·9%).

l-cyclo*Hexyl-1-phenyl-3-piperidinoprop-1-ene* (Table III, No. 11).—Oxidation with aqueous potassium permanganate in a similar manner to that described above gave hexahydrobenzophenone, m. p. 55—56°, after recrystallisation from light petroleum (b. p. 60—80°) (lit., m. p. 59—60°) (Found : C, 83.0; H, 8.6. Calc. for $C_{13}H_{16}O$: C, 83.0; H, 8.5%); semicarbazone, m. p. 174° (lit., m. p. 175°) (Found : N, 17.0. Calc. for $C_{14}H_{19}ON_3$: N, 17.1%).

Phenyl- and cyclo*Hexyl-alkylamines* (Table IV).—The corresponding alkenylamine hydrochloride (5 g.) was dissolved in ethanol (20 ml.) and shaken with 3% palladised charcoal (3.0 g.) in an atmosphere of hydrogen until absorption had ceased. The catalyst was filtered off, the alcohol removed by evaporation, and the residual *hydrochloride* recrystallised to purity. As indicated on p. 54, 1-cyclohexyl-

[1951]	T	ertiary	Carbin	nols an	d Derived	Pro	ducts. Part IV.
	_	<u>16</u> 8	11:0	11.1	5.3.		
	ď, %	N 9.44 9.6 9.44	* 0 4 0 4 0 4 1 6 0 4 1 6	4 6 4 4 4 4 7 6 4 6	10-3; N,	i	ed. %
	Required,	H 8 8 4 6	8.6 8.9 8.6 8.6 8.6 11.1 11.1 11.1		Required H. H. 10.2 9.6 9.6 9.6 9.6 11.5 11.5 8.8 9.6 11.5 11.5 11.5 11.5 10.0 11.5 11.5 11.5		
ģ	R	68.1 67.3 67.3	76-1 74-7			Analyses.	4 3 3 3 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1
Analyses	ĺ		11:5		ర	Ana	[]:0 11:1 11:3 11:2 11:2
V	%				uno		Found, %, H. N. 110.0 497 9.8 50 9.8 560 9.9 466 9.9 466 9.9 466 111.5 422 111.4 41 111.4 41
	Found, 9	{					
	[^E	H. 8.5 8.5 6.5	1	9.4 8.5 9.7	ridino-	.	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
		62.1 67.1 67.1		75.4 67.4 74.8 73.6	: 5 : 6-Tetrahydropyridino-	NR ³ R	Formula. C ₁₈ H ₂₈ N,HCl C ₂₀ H ₃₈ N,HCl C ₂₀ H ₃₈ N,HCl C ₂₀ H ₃₇ N,HCl C ₂₀ H ₃₁ N,HCl
(RªR3	for	stil. lt. COMe ₂	EtOAc EtOH-EtOAc EtOH-Et ₁ O EtOH-EtOAc	stOAc t _s O	etrahy	[H₂]"·]	Formulation (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
CH₁.N	Solvent for	recrystn. of salt. EtOH–COMe ₂ COMe ₂ F+OAC	EtOH-H EtOH-H EtOH-H	EtOH-EtOAc EtOH EtOAc EtOH-Et ₂ O H2O	6-Te	¹R³•[C	t for tn. ttoAc ttoAc ttaO ttaO ttaO 227- 227-
HO:						CHR	Solvent for recrystn. EtOH-EtOAc EtOH-EtOAc EtOAc EtOAc EtOH-Et _a O EtOH-Et _a O
CPhR		M. P. 01 salt. 200—202° 113—119 57—60	64-65 157-159 90-95 212	$\begin{array}{c} 221 \\ 221 \\ 125 \\ 157 \\ 157 \\ 160 \\ 206 \\ 230 \\ 230 \end{array}$	$H_{s} = 1$	nines,	
TABLE III -enes, CPh	-				N <c<sub>6H₈ = TABLE IV.</c<sub>	lkylan	P. or b. p. (0-201°) -122/0.02 mr 181 -114/0.02 mr 181 -122/18 mm -122/18 mm -122/18 mm -223 ° -223 ° -224 ckley (<i>loc. ci</i>
TABLE III. 1-Amino-3-phenylalk-2-enes, CPhR1',CH-CH ₁ 'NR ³ R ³		Formula of salt C ₁₂ H ₁₇ N,HCl C ₁₆ H ₂₆ N,C ₂ H ₂ O ₄	C18119-7,C2113-7,C2113-7,C2113-7,C2114-1,0-4,C214-1,0-4,C2144-1,0-4,0-4,0-4,0-4,0-4,0-4,0-4,0-4,0-4,0-4		4	Phenyl- and cycloHexyl-alkylamines, CHR ¹ R ³ ·[CH ₂] _n ·NR ³ R ⁴	vative. M. p. or b. p. chloride 200–201° chloride 120–122/0.02 mm. chloride 112–114/0.02 mm. chloride 1125–126 chloride 222–223 ° chloride 288–269 chloride 288–269 chloride 288–269 chloride 288–269 chloride 288–269 chloride 288–269 chloride 288–260 chloride 288
pheny		H ₁ ,N,H H ₂ ,N,H	Hand A	C20H20N,HCl C21H33ON,C3F C19H29N,HCl C20H39N,HCl C20H39N,HCl	cyclohexyl	ycloH	M 112- 190- 190- 190- 190- 190- 190- 190- 190
ino-3-					by <i>cyci</i>	and c	Derivative. Hydrochloride Base Hydrochloride Base Hydrochloride Hydrochloride Hydrochloride Hydrochloride Hydrochloride Hydrochloride
1-Am		f base. /18 mm. ·1 mm.	0-1 mm. 0-1 mm. 0-1 mm. 0-5 mm.	0-02 mm. 0-1 mm. 0-3 mm.	ced b	ienyl-	Derivative. Hydrochloride Base Hydrochloride Base Hydrochloride Hydrochloride Hydrochloride Hydrochloride Garcohloride Hydrochloride Hydrochloride Hydrochloride
				222	repla %.	Id	
		B. p. of 122—125° 87—95/0- 110—115/	137-140/123/123/123/123/123/123/123/125/123/125/123/125/123/125/125/125/125/125/123/1255/123/1255/123/1255/123/1255/123/125/125/125/125/125/125/125/125/1255/1055/10	110—118/ 154—156/ 123—125/ 	rmula N, 5-2		$\begin{array}{l} {}^{NR^3R^4}_{NC_6H_{10}}_{NC_6H_{10}}_{NC_6H_{10}}_{N}\\ {}^{N>C_6H_{10}}_{N}\\ {}^{N>C$
					eneral formula replaced H, 10-7; N, 5-2%.		
		NR ^a R ^a . NMe _a NEt _a NFf.	NEt ² NEt <u>3</u> NBu ⁿ 3 N <c<sub>5H₁₀</c<sub>	N <c h<br="">N<c h<br="">N<c h<br="">NEt N<c h<br="">N<c h<br="">D</c></c></c></c></c>	f gene ; H,		R ³ . C ₄ H ₃ ⁿ C ₆ H ₁₃ C ₆ H ₁₃ CH ₄ C ₆ H ₁₀ CH < C ₆ H ₁₀
		- ZZZ			Hw		CCCCCCCCCC 222 HEH
		Ri.	_*°ظ *°	C,H1,* C,H1,* CH < C,H1, CH < C,H1, CH < C,H1, CH < C,H1,	uires (Р. Р. Р. Р. С. С. С. С. С. С. С. С. С. С. С. С. С.
		Pr# Pr#	CH11 CH2Ph	CH C	° Phei N reg		**************************************
		0. – 61 eg N	94595	8 10 11 12	C ₁₆ H ₂		8465 4 3 12-0. 88465

TABLE III.

59

1-phenyl-3-piperidinopropane (No. 5) was also prepared by two other routes : (a) hydrogenation (4 mols.) of 1 : 1-diphenyl-3-piperidinoprop-1-ene (Part I, *loc. cit.*) in the presence of platinum catalyst, and (b) hydrogenation (3 mols.) of 1 : 1-diphenyl-3-piperidinopropane (Part I, *loc. cit.*) in the presence of platinum catalyst. 1 : 1-Dicyclohexyl-3-piperidinopropane (No. 6) was also prepared by hydrogenation (4 mols.) of 1-cyclohexyl-3-piperidinopropane (No. 6) was also prepared by hydrogenation (4 mols.) of 1-cyclohexyl-3-piperidinopropane (No. 6) was also prepared by hydrogenation (4 mols.) of 1-cyclohexyl-3-piperidinopropane (No. 6) was also prepared by hydrogenation (4 mols.) of 1-cyclohexyl-3-piperidinopropane in the presence of platinum catalyst. 1 : 1-Dicyclohexyl-5-piperidinopropane in the presence of platinum catalyst. 1 : 1-Dicyclohexyl-5-piperidinopropane (No. 7 and 8) were prepared by complete hydrogenation (platinum catalyst) of the corresponding 5-amino-1 : 1-diphenylpentanes (to be described in a later paper).

We are grateful to Mr. A. Bennett for microanalyses.

CHEMICAL DIVISION, WELLCOME RESEARCH LABORATORIES, BECKENHAM.

[Received, September 19th, 1950.]